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Abstract. A three-dimensional (Abelian) gauged massive Thirring model is bosonized in the
large fermion mass limit. A further integration of the gauge field results in a nonlocal theory. A
truncated version of that is the Maxwell–Chern–Simons (MCS) theory with a conventional mass
term or MCS–Proca theory. This theory is completely solved in the Hamiltonian and Lagrangian
formalism, with the spectra of the modes determined. Since the vector field constituting the model
is identified (via bosonization) with the fermion current, the charge current algebra, including the
Schwinger term, is also computed in the MCS–Proca model.

1. Introduction

It has been appreciated for quite some time that gauge symmetry in(2 + 1)-dimensions is
subtle, mainly due to the Chern–Simons term [1]. Self-dual theory with the (nontopological)
mass term is gauge invariant, being dual to the Maxwell–Chern–Simons (MCS) gauge theory.
The Chern–Simons term is referred to as the topological mass term. A master Lagrangian has
been constructed [2] which can generate both the above-mentioned models.

Including a nontopological mass term in the MCS model leads to the so-called MCS–
Proca (MCSP) model [3]. A Lagrangian analysis was given in [3] where the spectra of two
massive modes were provided. In this paper, a detailed Hamiltonian constraint analysis [4] is
provided for the first time. It is shown that an involved analysis leads to identical spectra and
equations of motion obtained via the Lagrangian method. This is one of our main results. But
there are additional benefits of Dirac analysis, which we elaborate below.

Let us now put the MCSP model, studied here, in its proper perspective. Our motivation
in the above model is that it has been derived from a three-dimensionalU(1) gauged massive
Thirring model [5] via bosonization of the fermion modes (in the large fermion mass limit) [1,6].
The bosonic theory is a master Lagrangian, comprised of theU(1) gauge fieldAµ, and an
auxiliary fieldBµ, introduced to linearize the Thirring self-interaction term. Integrating over
Bµ leads to a generalized MCS model, which under certain approximations sheds light on the
self-interaction effects on the inter-‘quark’ potential [7]. On the other hand, integration of
the gauge fieldAµ (in the Lorentz gauge) yields a generalization of the MCSP model inBµ.
A truncated version of it is the MCSP model in question. The added bonus of this scheme is that
Bµ reflects the behaviour of the fermion currentJµ = ψ̄γµψ sinceJµ ≡ Bµ/g, g denoting the
Thirring coupling. Indeed, we have correctly reproduced thecurrent conservationandcurrent
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algebra including the Schwinger term. More complicated fermionic composite objects can
also be studied. That is the other important result of this letter.

The letter is organized as follows: first we briefly give the bosonization results of the
gauged Thirring model. Then we deal with the Lagrangian formulation, in a way similar
to [3]. The particle spectra is obtained. The main body of our work follows, consisting of the
full Hamiltonian analysis and current algebra results. The letter ends with a brief conclusion.

2. Bosonization of the gauged Thirring model

TheU(1) gauged Thirring model Lagrangian is

LF = ψ̄ iγ µ(∂µ − ieAµ)ψ −mψ̄ψ +
g

2
|ψ̄γ µψ |2 − pe

2

4
|Aµν |2 +

qe2

2
εµνλA

µAνλ. (1)

HereAµν = ∂µAν − ∂νAµ and conventionally one takesp = 1/e2, q = µ/(2e2). The reason
we have considered them arbitrary will become clear as we proceed. The above model is
linearized via the auxiliary fieldBµ as

LF = ψ̄ iγ µ(∂µ − ieAµ − iBµ)ψ − 1

2g
|Bµ|2 −mψ̄ψ − pe

2

4
|Aµν |2 +

qe2

2
εµνλA

µAνλ. (2)

One-loop bosonization in the large fermion mass (as well as small momentum, i.e. lower
number of derivatives) limit yields the bosonic Lagrangian (to O(∂/m)),

LB = −a
4
CµνC

µν +
α

2
εµνλC

µCνλ − 1

2g
BµB

µ − pe
2

4
AµνA

µν +
qe2

2
εµνλA

µAνλ (3)

whereCµ = Bµ + eAµ, α = −1/(8π) anda = −1/(6πm). TheU(1) gauge invariance
present in (1) is clearly visible as regards theAµ field. TheAµ (gauge) andBµ (‘matter’) field
equations are

a∂µC
µα +

α

2
εαµνCµν + ep∂µA

µα +
eq

2
εαµνAµν = 0 (4)

a∂µC
µα +

α

2
εαµνCµν − 1

g
Bα = 0. (5)

The above two equations are combined to give
1

g
Bα + ep∂µA

µα +
eq

2
εαµνAµν = 0. (6)

Note that without the gauge field kinetic terms in the parent fermion model, we would have
obtained simplyBµ = 0.

The Lagrangian in (3) is ourmaster Lagrangian [5]. Upon selective integration of
the interacting fields in turn, different equivalent (dual) theories are reproduced which are
apparently distinct. In this way, it is possible to connect different well known theories. The
duality between them appears in the form of a particle spectrum, symmetry, Green’s function
etc. The next task is to integrate out the gauge field.

3. Particle spectrum: Lagrangian framework

Modulo total derivative terms,Aµ integration in the Lorentz gauge gives [5]

LB(Bµ) = Bµ
ap(a+p)

8 ∂2 + 1
2(pα

2 + q2a)

(
p+a

2 )
2∂2 + (q + α)2

(gµν∂2 − ∂µ∂µ)Bν

+
Bµ

2

(p2α+qa2)

4 ∂2 + qα(α + q)

(
p+a

2 )
2∂2 + (q + α)2

εµνλBνλ − 1

2g
BµB

µ. (7)
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The equation of motion forBµ is
ap(a+p)

8 ∂2 + 1
2(pα

2 + q2a)

(
p+a

2 )
2∂2 + (q + α)2

(gµν∂2 − ∂µ∂µ)Bν +
(p2α+qa2)

4 ∂2 + qα(α + q)

(
p+a

2 )
2∂2 + (q + α)2

εµνλBνλ

2
− 1

2g
Bµ.

(8)

ClearlyBµ obeys the current conservation(∂µBµ = 0), as is required of the fermion current.
Defining the dual ofBµ as

∗Bµ = 1
2εµνλB

νλ

we obtain two equations and the Lagrangian in (3) in compact notation as,

A(∗Bα)− D∂2Bα = 0 A(Bα) +D(∗Bα) = 0
LB(Bµ) = BµABµ +BµDεµνλ∂νBλ.

(9)

The nonlocal operators are

A ≡
ap(a+p)

8 ∂2 + 1
2(pα

2 + q2a)

(
p+a

2 )
2∂2 + (q + α)2

∂2 − 1

2g
(10)

D ≡
(p2α+qa2)

4 ∂2 + qα(α + q)

(
p+a

2 )
2∂2 + (q + α)2

. (11)

Combining the above equations in (9), we get

(A2 +D2∂2)Bα = 0. (12)

Unfortunately, the complicated nature of the operators prohibits further study of the field
equation. Let us now consider the approximations we mentioned before.

Keeping within the approximations involved in the bosonization scheme itself we drop
O(a2) terms. However, with a nonvanishingp (that is, in the presence of the Maxwell term
in (1)), the nonlocal nature of the effective theory persists. In the present case we avoid this
problem by puttingp = 0 and keeping only the Chern–Simons term in (1). It is to be noted
that the Maxwell term induced via bosonization, i.e. the|Cµν |2 in (3), remains. The operators
now become

A ≈
(

q2a

2(q + α)2
∂2 − 1

2g

)
D ≈ qα

q + α
. (13)

Hence theBµ equation reduces to[(
q2a

2(q + α)2
∂2 − 1

2g

)2

+

(
qα

q + α

)2

∂2

]
Bα = 0. (14)

The above equation is ‘factorized’ in the following form [3]:

(∂2 +M2
+)(∂

2 +M2
−)B

α = 0. (15)

The two values of the effective mass parameter are

M2
± =

2(q + α)2

q2a

[
α2

a
− 1

2g
± α

(
α2

a2
− 1

ag

)1
2
]
. (16)

Substituting the local expressions forA andD, we arrive at the MCSP model by neglecting
O(a2) terms, but in the above analysis we have not dropped O(a2) terms. There is no
contradiction here since now we are studying the MCSP model as such, forgetting how it
was originated in the first place. However, if we persist witha2 ≈ 0 in (14), we end up with a
single massive mode,

(∂2 +M2)Bα = 0 M2 ≈ (q + α)2

16q2α2g2

(
1 +

a

8α2g

)
.

This concludes the Lagrangian analysis of the MCSP model.
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4. Particle spectrum: Hamiltonian framework

We start with the MCSP Lagrangian, using (13),

L = PBµνBµν +QεµνλB
µ∂νBλ +RBµB

µ (17)

where

P = −q2a

4(q + α)2
Q = qα

q + α
R = − 1

2g
.

The conjugate momenta and the canonical Hamiltonian are defined in the standard way,

5µ = ∂L

∂Ḃµ
H = 5µḂµ − L. (18)

Explicit expressions for the above are

50 = 0 5i = −4P(∂iB0 − Ḃi)−QεijBj (19)

H = − 1

8P
(5i +QεijBj )

2 +B0(∂i5i −Qεij ∂iBj )− PBijBij − RBµBµ. (20)

We now perform the constraint analysis by obtaining the constraints and subsequently
computing the Dirac brackets. Our aim is to obtain the equations of motion of the modes
and reproduce the spectra obtained in (16). The primary constraint is

91(x) ≡ 50(x) ≈ 0 (21)

and time persistence generates the secondary constraint

92(x) ≡ 9̇1(x) =
[
91(x),

∫
d2yH(y)

]
= ∂i5i(x)− 2RB0(x)−Qεij ∂iBj (x) ≈ 0. (22)

These brackets are obtained by using the fundamental Poisson brackets

[5µ(x), Bν(y)] = gµν δ(x − y).
The constraints constitute a second-class pair with the nontrivial algebra

[91, 91] = [92, 92] = 0 [91(x),92(y)] = 2Rδ(x − y). (23)

The inverse of the constraint matrix9ij , defined by
∫

d2y Cij (x, y)9jk(y, z) = gikδ(x − z)
has the nonzero element

C12(x, y) = − 1

2R
δ(x − y).

This generates the nontrivial Dirac brackets

[B0(x), Bi(y)] = 1

2R
∂iδ(x − y) [B0(x),5i(y)] = − Q

2R
εij ∂j δ(x − y). (24)

The rest of the brackets are not altered. From now on we will always use these Dirac brackets.
TheB0 − Bi bracket recovers the correct Schwinger term in theJ0–fermion current algebra,

[J0(x), J0(y)] = [Ji(x), Jj (y)] = 0 [J0(x), Ji(y)] = −1

g
∂iδ(x − y). (25)

After strong implementation of the constraintsH in (20) simplifies to

H = − 1

8P
(5i +QεijBj )

2 − PB2
ij +R(B2

0 +B2
i ). (26)

The time derivative ofB0 reproduces the current conservation,

Ḃ0(x) = [B0(x),H ] = ∂iBi(x). (27)
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The above current algebra and conservation equation are two of our main results. Note that
the Dirac brackets are crucial in recovering them. We now rederive the particle spectrum.

First we compute the following time derivatives:

Ḃi = 1

4P
(5i +QεijBj ) + ∂iB0 (28)

5̇i = − Q
4P
(εji5j +QBi)− 4P∂jBij −Qεij ∂jB0 + 2RBi. (29)

We take time derivatives of the above equations,

B̈i = 1

4P
(5̇i +Qεij Ḃj ) + ∂iḂ0

5̈i = − Q
4P
(εji5̇j +QḂi)− 4P∂j Ḃij −Qεij ∂j Ḃ0 + 2RḂi.

A long algebra yields the following set of equations:[
∂2 − 1

2P

(
R − Q

2

4P

)]
Bi = Q

8P 2
εij5j (30)[

∂2 − 1

2P

(
R − Q

2

4P

)]
5i = −2Qεij ∂j (∂kBk) +

Q

2P

(
2R − Q

2

4P

)
εijBj

+2Qεik∂j ∂jBk − 2Q∂i(εjk∂jBk). (31)

The constraints have been used strongly. The same operator arising in the left-hand side of
both the above equations is used once again and we get[

∂2 − 1

2P

(
R − Q

2

4P

)]2

Bi = − Q2

16P 3

(
2R − Q

2

4P

)
Bi. (32)

The identical equation appears for5i as well. This chain of derivatives diagonalizes the
equations of motion. Factorizing (32), we obtain theidenticalset of expressions forM± given
in (16). This concludes the Hamiltonian analysis.

Substituting the known expressions we get the explicit forms of the masses,

M2
± =

24πe4m

µ2

(−1

8π
+
µ

2e2

)2
[

3m

16π
+

1

g
± 1

2π

(
9m2

16
+

6πm

g

)1
2
]
. (33)

Assuming that the relative strengths of 1/m andg (the Thirring coupling) is such that for large
m, mg (a dimensionless quantity) is also large, we expand the square root and keep terms up
to O(1/(mg)), and we get

M2
+ ≈

48πe4m

µ2

(−1

8π
+
µ

2e2

)2(3m

4π
+

1

g

)
M2
− ≈

16π2e4

µ2g2

(−1

8π
+
µ

2e2

)2

.

(34)

Interestingly,M+ � M− sinceM− is independentof the fermion massm, the large parameter.
Since spin of the particles is determined by the sign of the mass [1,3], the small value ofM−
can lead to a spinless particle.

5. Conclusions

The Hamiltonian and Lagrangian of the MCSP model has been performed, with the full spectra
of modes revealed. The interest in the model lies in the fact that the model has been derived
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from the bosonized version of aU(1) gauged massive Thirring model. Since the bosonic
vector field and the fermion current are identified, the bosonized model, and in turn the MCSP
model, yields properties of its fermion counterpart. As a nontrivial application of the above,
we have computed correctly the fermion current algebra, with the Schwinger term, staying in
the MCSP model framework. The behaviour of other fermionic composite objects, constructed
from fermion currents, can also be studied in the MCSP model, where the quantum effects
enter via the process of bosonization.

I am grateful to Professor S Dutta Gupta, director of the S N Bose National Centre for Basic
Sciences, Calcutta, for allowing me to use the Institution facilities.
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